MLEBEO LANGUAGE MANUAL

Luiz R. Pedroso

October 1975

LABSTRACT

A structured systers proarammina !anauoae for the PRI

microprocessor 1s gescribed. The larmauaoe provides an aloe-
2t ae -

braic notation for _machine-level reaister armd  aata puera-

lions, while incorporatina most control constructs avajlarle

in block=structured high-level lanauaaes., Compile-time fa-

cilities include recursive macros, expression evaluation,

and conditional comrilation. Object orograms are relocat~
— e ST

able, and innependently comrniled orocedures can be lirked ot

load=-time. The resident corniler executes on a ’TiCr'OCO-'"t‘Ut"

er system with 16K bytes of main memory.



- IO, ol - K. == —
i | om¥y/ — racRo PR~
1 S &5 2 ‘
i . — ¥ AT = [PAaRSER
A : ‘ l - LSO PAR
Y | S B S e L . — /T O S-)r/-

st e e e et s e f AT~ mdE eE
H '!" = a ‘2"‘2 ] Dk

T2 Rerm<

T T SR B e R .

i
! e o _
|
i
‘
i
R £, . e e e I
!
i
]
i
-:‘-» . — - - — e - -
k3 i
o
" ]



i,

AN

l.

2s

TABLE OF COMT

INFORMAL DESCRIPTION OF ML
General.e.ccacasssavrecensns
MBO: a macro processing |
a. S FUE ExiFds v ns & v o & 5
b. Macro declarations...
Ce Macro CallsSeesovrecnsean
de. Assignment statements
€. Evaluation statements
f. Conditional statement
LBO: & machinme oriented |
a. StructurE.ecscrcessse
b. Storaae declarations,.
€ Assignment statements
d. CrouUpS.escscesossssnonss
€. Conditional statement
f. Case statementS.eeeees
Q. Iterative statements.
h. Procedure declaration
1. Procedure calls......
) Label declarations...
k. External declarations
1. Control statements...

SYNTAX OF MLBO, .ceeecsene

MBO Qrammar.ccssssecscsses

ENTS

B0 »

anau

- e =

14

16

17

30

31

46



e LBO groammar.eeecssescssssesnscsas

C. PROGRAMMING

1. A

e Multipnlication and divisjion

EXAMPLES . e eeeeenenens

buoble sort procedure.ee....

B Usace of external

procedures. .

rou

APPENDIX A - MLRO COMPILER OPFRATIOM....

APPENDIX B

MLBO COMPILER

ERPOR

5
m
m
.

-----

MESSAGES.....

SE

6ou

6He

67



MLBO LANGUAGE MANUAL

A. AN INFOURMAL DESCRIPTION OF MLAO
1. General
MLBO 1s a lanmguage designed to encourage structured
programming. and thus it‘ incorporates many of the usual
features of block structured lanquaaes. In particular, ¢
following mechanisms are provigea:

- nested block structure;

- controllable scope for variables and data;

- adeauate control constructs, includina:

IF~THEMN-F] SE .,

DO=wHILE,
DO=-RY,
PO-CASE ,

REPEAT-UNTIL;

- procedures.

Another important fPaturé; orrented to~vard modular

programming, is the provision of EXTERNAL ang COMMON de-
— fihiiings

clarations, These declarations allow proaram references to
code or datea, respectively, generated from previous co=o1la-
tions, thus allowinao ceonstruction of procedure libraries and
data bases,

Although the control structures of MLEBO are similar
to those found in high=-level lanauages, data maripulation
operations are orovided at the machine level. Al inst ruc-

tions available in the 80KO instruction set can pe directlvy



accessed by the proQrammer. The notaticn utilized is alaes-
braice. rather than the usual mrnemonic ooeration codes emn-—
ployed by assembly languaaes. Nested expressions also can
be built wusing the basic arithmetic, logical and cata:
transfer ooerations, thus contributing to program coaoncise-
ness and readability.

Macro processing faailities are provided in MLKBO to
further aid formulation of complex operations using orimi-
tives at the machine level. These facilities include:

- compile~time expression evaluation;

- parameterized macrosrs

- conditional macro expansicn;

- regursion.

MLEC 15, in fact ., comnosed cf two indecenrdent
lanquaqes: MBO, a macro oriented lanacuage, ann  LRU, 2
machine oriented lanquaae.

Althouagh desianed to work in conjurction with nne
another;, these lanauaqges are completely independent ana
selt-containe-l. A Drocrammer can write ana run L#B0O prcarams
without any knowledae of MEO. Similarly, orocrams {or any
texts) containing statements in the MB0U lanquage can be 1in-
put to the MB0 macro precessor without reaard to the source
lanauage.

Given the modularity of MB0 and LABG, these two
lanquages are described 1n a totally independent manner, 1n
the foilowing sections. Examoles of o©rcarams written in

MLBO, which incorporate statements in bkoth lancuaaes, are



presented in Section C.
2. a macro processing lanquage
a. Structure

MBO0 is a lanauaae inreﬁded for cormventional mac-
ro processing (text replacement) along with arithmetic ang
logical expression evaluation,.

An N80 pbrogram ié any text containinag 0 or more
MBO statements, which are delimited by the bracketing sym-
bols "I[" and "1".

A1l MBO statements are free-format. They can be
placed anywhere in the soJrce text, anc cccupy any nurber of
lines. In well formed MB0 oroarams the brackets always ac-
pear in mgtéhino pairs, which can he nested in a way aralo-
qous to parenthesis nesting in arithmetic expressions.

A1l text outsiaoe brackets 1s meant to be siwﬁlv
rep#oduced Wwithout any modification, while the commards in-
side brackets are interbreted, trigaering a macro action. A
macro action always causes the correspondirg statemert (in-
cluding its brackets) to be remlaced by some strina. 1n
particular, the replacement strina may be empty.

Since MB0O is desianed for both text and intecer

manipulationse its statements are centered around two basic

tynes of entities: textual macros and inteacer macros.

(Inteaer macrosi behave as integer variables in

most programmina languaaes. In particular, they have nunmer-
ic values which can be modified throuch assignment state-

ments and wused 1n expression evaluation and conditiongal

6



statements. On the other hand, a textual macro 1s associat=-
ed with a string, called its macro body. A textual macro
can also have parameters.

tvery macro has a{name,l which {15 sgne unioue

identifier (a seauence of anv|number of alphanumeric charac-

ters, startino with a letter = the % siar 15 consicered a

Jletter in MHO). Ihe only restriction is that macro nares

must be different from the MB0O reserved words, which are:
MACRO, INT, 1F, THEN, ELSE, DEC, OCT, HEX, CHaAK,

MB0 adopts the same syntax as PL/M for strinas,
numbers and comments. For instance, 'ABCD' denotes the
string AbCL, while '"AB''CD' represents the string AHL'Cii:
D7F7H, SSU, 1210, 0001018, 121 represent the numpers O07F7
hexadecimal, 55 octal, 121 decimal, 000101 binary ana 121
decimal, respectively. The leading digit ot a hexadecirel
number must be a decimal diait, to avoid confusion with mac-

ro names. Thus, the hexadecimal number F3 is written UF3H,

Comments are enclosed in /%2 %/, and are 1anoarea
whenever they aopear as part of an MBO statement.
MB0O macros can be created, modified arcg invoked

by means of the fnllowing statements:

- macro declarations
- macro call;

L U
assignment statement;
e e e e e

- evaluation statement;

- condityonal statement.

~r\ ~ ST Y —_—
]

lhese statements are described in cetaill in the



following paragranhs.

b. (Macro deciarationg]

~Jextual macrosf are created usinrg statements in

the follewing format:
I MACRO_ <macro name> <formal para~ 1> <formal param 2> ...
ees <formal param n> <macro-honv>j
where <macro name?>, <formalhparam Vi EE § €S my, n>=0, stany
for unique identifiers, and <macrc boaoy> represents A
String. The statement
[ MACRO C 'A=A++(C"' )
defines a textual macro w;th name C, macro body A=A++(, ans
no formal parameters. Similarly,
[ MACRO A Ri Re 'A=A+I[R1), +[R21, +([R3]"' )
creates a textual macro A, with formal parameters Rl, RZ2,

and a macro body equal to the strina enclosed in the sincle

aquotes.,.

\Integer macrosf{are declared using statements of
the form:

[l INI <macro name !> <macro name 2> ,.. <macro name n> |}
where <macro name 1>, 1<=1<=n, n>0, are uniaue i1dentifiers.
As an example,

[ INT X Y Z )
gefines three integer macros X, Y, Z. The values of integer
macros are initialized te 0 uponm declaration.

Both INT and MACRD Statements evaluate to tha

empty strina, and thus have only the side effect of creatina
— D N

Nnew mMacros. For instance, the linege
-—-_____-—-—-.ﬂ‘-'—‘-‘_-



COl MACRO P '"125' IME 1O THIINT V o)1t &ID
evaluates to

COME TO THE AID
although 1t causes the creation of textual macro P and in-
teger macros V and W.

MBQ macros are oraanjzed as a stack That 1S,

i f more than one definiticn exists for a sinale macro, then

only the most recent definition i1s effective. This fact S

important in the evaluation of parameterized macro calls, as

illustrated below.

Ce Macro calls

After being defined, macros can be invokeg by

statements which have the followina syntax:

Il <macro name> <actual param 1> <actual param 2> ...

... <actual param n> ]
where <macro name> is the name of some integer or textual
macro, and <actual param 1>, 1<=i<=n, n>=0, are strings. -1t
is important to notice that n=V .for integer MAaCrosy M. e .

only textual macros can be called with actual parameters.
e — «.’—'—'

If the macro beina called is an \Ninteaer macrqf,

b 7

then the macro call is reD1aced in the source text by theo

value of the macro, i1n decimal format and with supnoression

of leaacding zeros. If the value 1s neagative, a minus sicn is
generated. For instance, assuming that Y is an intecer mac-
ro with value 8, the line

vyl 18 AN ([Y)-B1T VARIABLE

will evaluate to

Q9



Y8 IS AN 8-8B1T VARIABLE

Similarly, if the value of inteaer macro X is =20, then
A=A+ X /* THIS IS A COMMENT */ 1,=1(X)

yields
A=A+-24U,-=-20

For\textual macrosy two cases must he con—
X

sidered: assumina that a call to a textual macro contains
actual parameters, and the macro beinag invoked has n formal
parameters, either m>n  or m<=n, The former case is con-

sidered an error, while the latter has the following effecrt:

-Zm temporary textual magrqQs are created, with mACro nNames

<formal param ]>¢.ftormal param 2>, ..., <formal param m>,

and macro bodies <actual param 1>, <actual parar 2> ...,

<actual param m>, respectively;

- the[Eacro call is replaced by the boady of the macro beinn
invokeQL,\Epwever, if macro calls are present in this racro
body, they are themselves evaluated before the substitution
takes placei  the evaluation -of macro calls embedded i; a
macro body is performec from left to riuhng

- after the replacement of the macro call is completed, all
temporary macros are deleted.

Since the process described above 15 recursive;
it may be useful to i1illustrate the evaluation of macro calls
with some examples. Given the MBO proaram

xxx [MACRO A B C '{B] IS THE (C]"' Jyyy
zzz A "NOW' "TIME')] www

execution proceeds as follows:

—
o



- the statement in the first line defines macro A, with for-
mal parameters B ana (7 the statement itself evaluates to
the empty strings;
- upon recoanition of the call to macro A in the second
line., temporary macros B and (C, with macro boaies HUV anc
TIME, respectively, are created;
- before the body of macro.ﬁ is inserted in the text, it
must be evaluated, since 1t contains calls to macros‘b and
Ci
- the evaluation of the call to macro B is performed ecccord-
ing ‘to the same steps'hescribed abover however, since no
parameters are involved, and also because the body of racro
& (the string NOW) does not coniainm other macre calls, the
net effect is to replace [B] by NOw:
-~ the evaluation of I[(C) siﬁi1ar]y vields the strina I I1™E ;
therefore, the expandedg version of the bedy of macro A is
the string NOW 1S5 THE TIME;
- the followina output 1s qgenerated:

XXXYYY

zzzNUW IS THE TIMEwww
- finally, the temporary definitions ot macros B and ( are
deleted.

As another example, the program:

xxx [MACKO B '"NOW' JIMACRO D *1IB) '"lyyy

zzz [MACRO A (D] IS THE TIME' ] [(A)www
generates the same output as the orevious one.

At this point 1t should be neoticea that in el



any macro calls can be present inside any strings. (NS
e e e

———

every MBU statement behaves as a macro caTL; For instance,
xxx [MALRO X '"ABC (MACRO M '"XYZ'IDEF' Jyyy |

defines a macrc X such that its bodv contains another rmacrc
declaration, which can be thouaht of as a call to a preace-
fined macro MACRU. Althouah XY7 is itself an inaivicual
string, no confusion ariges from 1t beinag embedded in the
body of macro X.

1t should be observed, therefore, that trackets

in ™MB0 are also used to modify the scope of strinos. For

instance,

"ABC | MACRO M 'XY[MACRO N 'U''V'.1' JDEF'
is a sinale string, in which two levels of embeddina occur;
the innermost macro declaration associates body U'V to macro
N.

1t is important to notice that formal parameters

defined in a macro declaration can bhbe activated only 1f they
are invoked (directly or indirectlv] in the boay of thedr
defining macro. A declaration like

MACRO x Y 'xYZ1' )
is syntactically correct, but the formal parameter Y will
never be activated.

As previously mentioned, 1f a macro has more

than one definition, then the most recent one 1s adopted

when the macro is invoked. The consecuences of this proper-
ty are illustrated by the following example:

(MACRO B 'S' 18=1[8]

12



[IMACRO C '8' 1C=IC)
(MACKO A B C '"A=(B]1+IC)I+ICYI+[B) " J(HI+I(C)
(A '3 '4' )

A "7 )

[A]

which evaluates to:

A=3+4+4+3

A=T7+8+8+7

A=S5+H+4+5

In tne fourth line of the example aboves racio

is called with twe actual oarameters;: temporary definjtione
for macros % and C are established, so thecse are the  magt
recent ones whenr the body of A is evaluated. After the orno-
cessing of this call is completed, those definitions are
deletea. This accounts for -the results obtained for the
calls in the last two lines. For the last line, the nrost
recent definitions for macros B and C are those createrd 1n
}he beginning of the proaram (if these were not availanie.,

£

an error condition would arise). The net effect of tnin

mechanism 15 the provision of default values for rcarame-

—

ters.
——

Some additional examples of evaluation of macro
calls are presented after the introduction of other features

cf MA0.

13



d. [ﬁssionment statement s)

Assignment StathentSkﬁ1]Qﬁ modification of the

values of integer macros: they are of the form:

[ <macro name> := <expression> |
where <macro name> is the name of some previously declareco
integer macro, and <expression> stands for any arithmetic or
logical expression involvind integer macros and/or con-
stants.

wow-EMBEIDED
Assignment statements always evaluate to the
e —————

empty string. For instance, the proagram

VAL INT Y ) [ Y:=2542%3 JRTABLE[ Y J=0Yz=Y+Y] (Y]
generates the text

VARIABLE31=62

The tollowing orerators are availahle for ox -

pression evaluation:

* / Zimod) (highest precedence)
+ -

- < > <= b s <>

!{not)

4 (and)

\N(or) A\ (xor} (lowest precedence)

lhe relational operators =, <, >, <=, >z, <>

denote Einary operations which yield the value 0 (false) or

255 (true); the logical operators !, &, + N\ are applied on

— ——

a bit by bit basis. The overator ! is unary; a -unary minus

operator (=) is also provided. As an example, the statement



[l Y 2= (=3>20) + OFHR3xZ 1
assiagns the value 6 to intedger macro Y.

#henever an integer macro 158 used in expressicn

evaluation, an embedded assianment statement enclose . N

parentheses (instead of brackets) canm be used. Empbedren aa-

signments are_treated as exoressions;gthe value of an embed-
ek 07 eh elamed

ded assignment is the same as the value of the expressicop in
= - b= e e e —

its right hand side. For 1nstance,

=3) + (Zz=4) 1}

assians the values 1, 3, 4 tc integer macros X5 Y 7 L
respectively.

Parenthesis can also be used freely rto alter the
precedence of arithmetic or logical operators, as in crnyon-

tional alaebraic notation.

Assignment statements, as any other bracxeto::

MBO statements, can be thoucht of as ﬂ%&i&_&illif Inaie-

fore, if they are embedgded 1n the body of =z textual CACrQ

they are executed every time the textuya] mdcra},s invobad,

: ; 1%
For instance, the MB80 program o ;75
of BRAK
[INT XJ xxx L &
27 /
ZaTF

IMACRO C "([X) IXx:=X+11," Jyyy
ICl1IC)(CiIClzzz

aenerates the followino output:

YYY
Uflrdrjfzzz

The same output is qgenerated by:



[INT X)1x [MACRO TNCX '"(X:=X#1)"' )xx
IMACRO C " [X] LINCX),"' Jyyy
(CYICY IX) [INCX) [Clzz2

e. JEvaluation Statements)

Evaluation statements allow generation of

ic values in adifterent formats, as well as special

ters, including the ©orackets themselves (brackets

fziprmmer

crarac:

1Nsi

strings always flag the presence of macro calls; therefore

special mechanism is needed for brackets whicn are

treated as text).

to Oi

tvaluation statements have the following syntax!

[ <format> <expression> ]

where <format> 1s any of the reserved worcgs DEC, oCT1 ., HF X

CHAR, and <expressicn> is defined as for assignment

ments.

state-

The effect of DEC, OCT, HEX 3is to cause the re-

placement of the evaluation statement by the value ot <ex:

pression>, 1n adecimal, octal or hexardecirmal format,

tively. For instance,

res3pec:

ABL DEC 15+8 J,[(HEX =11, (INT X]{OCT (X:=0FH)+1],CDI(X]

vields
AB23,0FFFFH,000020Q,CN15
When CHAR i1s useda, the evaluation statem
replaced by the character whose bit pattern is eaual
least significant bvyte of the value of <e;nression>
instance, assumina that ASCTI[ encodine is used in the

mentation of M80, the proaram

ent 18

te the

> Fo:

1np e



xxx [MACRO B ' [CHAKR SBH]' lyyy

22z [MACRO E ' [CHAR SDH) ' ] www

uuu [BIMACRO X "Y' (E)wvvv
yields

XXXYYY

Z2ZwWwWwW

vuu [IMACRO X '"Y'lwvy
Also assuming the ASCII code, the effect of

[MACRO LF '"I[CHAR OAH /* LINE FEED x/1' JTILF) ILF] (LF]
is to generate three line-feed characters.

As any other QHO statements, evaluation statea-
ments can be embedded in any macro bogies or actual rarame-
ters. Unlike macro declarations and assianment statements,
they do not evaluate to the empty strinag (except when [[HIx
nl, where n does not correspond to a porintabhle character, is
issued; the result in this case is uncertain).

f. {Eonditiona] Statemeﬁtﬁl

Conditional statements are used to create (11 f=

ferent execution paths in an M8U program; they also nroviae
the ability to define recursive macros, i. e. macros which
invoke themselves.
Conditional statements have the followino Syn-=

tax:

| IF <expression> THEN <string 1> ]

or

[ 1F <expression> THEN <string i> ELSE <string 2> ]}

where <expression> 1s aefined as for assianement statements,

17



and <string-1>, <string 2> are strings enclosed 1in sinqgle
quoteé, and which may contain any number of well formed MHEOD
statements (includinag conditional statements).

Conditional statements cause the <expressior> to

be evaluated. I1f the least sianificant bit of the result is

-

Li,Lf then <string 1> replaces the conditioral statement ,
otherwise <string 2> (or the empty strina, in the case of
the IF-THEN construct) is used as the replacement strina,
0t course: it macro calls (MBO statements) are embeodea 10
the replacement strina, they are evaluated before tne re-
clacement 18 performed,u as for reqgular macro bodies. For
instqnce'

[IF 4>% THEN 'UN' ELSE 'BIN']JARY OPERATOR
vields the string

UNARY OPERATOR
while

LINT X) [IF X=0 THEN "% [DEC (X:=%)] [X}&x*' ELSE '27')]464Y
results in

xxS55x x99

Use of congitional statements 1n the proqgramping

of recursive textual macros is illustrated by the followina
example: suppose one wishes to create n groups of asterisks,
such that the i-th group contains 1 asterisks, anc¢ ter-
minates with the number 200+3. A possible saluticon woula
hel

[INT NG 1)

[(MACRO STAR '{ I := I-1 J01F I>0 THEN '#(STAR]) ') ")

L&



IMACRO GROUP '"[IF (G:=G+1)<=N THEN
'{1:=G+1)1STAR) (DEC 200+G) (GROUPI' 7'
Then the output corresponding to the calls
[(MN:=5]1 [GROUP]
[G:=0) [MN:=6]) [GROUP]
2 201 22 202 2xx 203 ii;* S04 Aa*rarx 204
* 201 22 202 224 203 *axx 204 rxxx2r 205 x2x+xx 206

Conditional statem;nts can also be used for qgoen-
erating tailored programs from a general package which in-
corporates different vers;ons of routines. Selected por-
tions of code can be excluded from, or included into, the
final product, without the need for extensive editina in the
original packaage (usually only a small number of intecer
macros, used as switches, have to be set). This techniaue
is known as conditiconal comoilation.

The above description summarizes most of the
important aspects of the M80 languaae. Adcditional details
are provided in the last sections of this chapter.

3 iLBO:&a machine oriented lanauaae
a. Structure

Lccording to its desian objectives, LEO 15 a
lanauage which attempts to bring adequate proaramming tcols,
characteristic of hiaher level languaaces, to the envircnrment
of machine-oriented proaramming.

The structure of L8O is stronaly influencea by

both the PL/M languaae and the architecture of the 2080 mi-

1a



croprocessor. The influence of PL/M is easily recognized in
the control constructs ‘and data definition statemérrs o §
LB0; the dependence on the ADOHB0O characteristics occurs moSft-
ly at the data manioulation level.

One otf the original aoals of L8O was to allow
modular programminQg throuah the aeneration of relocatable
modules which can be retrieved and linked into a single pro-
aqram. Some of the constructs in the lanauane reflect this
idea.

An L80 orogram i1s free-format, and consists of a

sequence of statements separated by semicolons, and ter-
—

minated by the word £0F. Both upper and lower case charac-

RS

ters are recoagnized in L80, and the dollar-sign (%) is con-
sidered an alphabetic character. Except for these corven-
tions., the svntax of identifiers, nurbers, strinus and com-
ments is the Ssame as in PL/M.

Identifiers can be defimed by tnhne proarammer and
used as symbolic names for variables, constants, anc ac-
dresses of code seaments. They are made up of any nusmber cf
alohanumeric characters;, beainnino with a letter. flurmeric
constants can be written in decimal, bexadecimal, octal or
binary tormats: os an example, the number 16 Caﬁ e derpoten
by leD or 16, 10H, 200 or 200, 010000B, resoectively.

Strings are enclosed in sinale quotes. Quotes
which are to be interpreted as part of a strina are denoted
by two contiqgucus sincle quotes: txyrtrzet, forr instance,

represents the string xY'Z. Comments are enclosed in./* 1/,



and may appear between any two basic tokens.

In addition to the symbol EOF, some other unper
case identifiers are considered reserved words in LHO; a
complete list of these words is presented in Fiqure 1. Cer-
tain special characters are usgd as onerators or statement
delimiters; they are summarized in Figqure 2.

The statements évailablp in L0 can be divided
into the following cateqories:

- ELELEQE declarations;

- assianment statements:?
e —————

= groups;

- conditional statements;

~ case statementsys
- iteratijve statements;
= E:Eﬂﬂiili declarations;
- procedure calls;
- lapel declarations:
- external declarations?’
- control statements.
Each one of these cateaories is described in the followinn

paraarapnhs.

b. iStoraqe declarations?

By means of storaqge declarations the proaoramrer

can set aside memory locatiors for future use in a proaramr.
For instance, the statement
DECLARE X(5%) BYTE

defines a variable X, occupyving a total of % bytes.

21



e B T " . i — =

A DE H
B DECLARE HALT PLUS
BC DISABLE L PROCEDURE
BY DO IF PSvi
BYTE E I PY
C ELSE IHITIAL REPEAT
CALL ENABLE L \RETUKTN
CASE END LAKEL SP
COMMON EOF M STACK
e EVEN MINUS ITHER
D EXTERNAL Inoe. JUNTIL
DATA [cor0 [oPD [RHILE

: ) ZERU

Figure 1. LB0 reserved words.

- (add) < (ral) = (assian)
++ (adc) << (rlec) == (exchanae)
- ({sub) > (rar) : (label def)
-~ (sbb) >> (rrc) t: (compare)
& (and) ! (not) ; (separator)
\ (or) r (daa) ’ (separator)
N% Cxour) = (address) ()

Fiqure 2. LB0 special symttols.

22



Similarly.,

DECLARE (X,Y) BYTE
creates two variables X and Y, each one | byte long. Ini-
tial values can be assigned to variables, as in

DECLARE X BYTE INITIAL(Z2S), Y(3) BYTE INITIAL('ABC')

The above declarations are used to recuest
mémory locations 1in read)write memory (RAM); assignment of
storaae located in read-onlvy memory (ROM) canm be imposed by
the programmer with a statement such as

DECLARE x DATA(C'ABCD',0)

om

In this example, X is defined as a constant (since 3t 1 to
be locateda in ROM), S bvtes lona, and initialized tao tne

values encloseo in parenthesis. The lencth ot the constant

is implicit in the declaration. Storaage_allncated as DATA
———

is usually interspersed with the code {executable instruc-

tions) in the object programr‘while BYTE storage is allocat-

ed outside the code recion,

Prorerly declared variables and censtants can be
referenced by their symbolic names. For instance, after the
declaration

DECLARE (X,Y)(3) BYTE INITIAL(C'ABCD")
the contents of X and Y can be referenced in the followina
ways:
¥ or X(0): the contents of memory starting at the
first byte assianed tao X:
X¢10E the ceontents of memgrv starting at the

second byte assianed to X;

23



"%X(3) or Y: the contents of memory startina at the
first byte assianed to Y.
It is important to notice that the.lenuth of the referencen
location ‘depends on the operation beina verforred, Ladi -
tional information on this aspect 15 provided in the next

section.

A special operator, dot (.), is used to refer-
ence the address, rather than the contents, of memory leoca-
tions. in the above example,

. %X yields the address of the first byte allocated to X,

.

.Y(2) gives the address-of the third byte of Y 5 anc so

Since addresses are constants in LAY (their
value being determinecd at load tire), the tollo~ina Drogram
segment 1S correct:

DECLARE X(3) BYTE:

DECLARE xA DATAC.X, .X(1), .X(2), .X(3)):
Here XA is created as an array of pointers to the 3 elerents
of X and to the first hyte after X. Since addresses in the

8080 are 106 wpits long, XA occupies 8 bytes.

Cos Assignment statements

Assignment statements are used to alter the con-

tents of registers and memory Iocationsilgue to the fact

that they define operations at the register level, assian-
ment statements reflect moSst of the peculiarities of the

8080 architecture.z

24



One of the auidelines of LR0O i1s that mrodifica-
tions of the contents of registers are always explicit in
the source proaram, 1. e. the code emitted by the comuiler
should not destroy the contents of ary registers, even when
behind-the-scenes operations are perfcrmed.

An obvious nuvaniaqe of this feature ig that the
source program actually reflects the seauence of states as-~
sumed by the machine. Another consequence 15 related tc the
structure of LB0 assignment statements: since it woula bhea
inefficient to save ana restore renisters for every assian-
ment operation, register allocation is left under programmer
control.

LB0 attempts to provide a convenient notation

for reqgister operaticns:, by means of the followinag conven-

t fonss

- eight l-bvte reaisters (A, B, C, D, £, H, L, ™) are avail-
able in the B0B0 microprocessor; thev are denoted in LHY Dy

A, B, C, D, E, H, L, M(HL), respectivelv;

- register pairs B and C, D and E, H and L can work as indi-

vidual Z2-byte reqisters; these reqister pairs are reoresent-
ed in LBU by BC, DE, HL, respectively;
- operations provided by the B080 CPU car he classifien as
binary and unaryg; hbinary opverations are agenoted in LED hv
the operatcrs:

+ (add)

- (subtract)

++ (add with carry)



-- (subtract with borrow)

& (and)
A (or)
\\ (xor)

while the unary onerators are:
! (not)
< (rotate left throuqh‘carry)
> (rotate riaght through carry)
<< (rotate left into carry)
>> (rotate riaht into carry)
& (decimal adjust)
Some examples of register. operations in LRB0O can

now be given:

B o= B o+ 13 /* increment reaister B 2/
A = C + B; /+* move C to A, add B to A =~/
A = A + M(HL): /* add the contents of memory location

pointed to by HL into A =*/
A = A ++ 33 /* add 3 plus the carry bit tao A &/
A = A & OFH:; /* and A with hexadecimal constant UFf =*/
The above proaram seament could alseo be written as:
n:c+(B:H+f),+M(HL),++3,&0FH:

As can be concluded from the example above, com-
mas are used in L8B80 to factor out the left hand sfde of as=-
signments to the same reaqister, and also imply that execu-
tion proceeds from left to right, with no operator pre-
cedence involved.

Parenthesized assignment statements can be used

26



whenever a reaister is allowed 1n the right hand side of as-
signment statements; they also serve to force the seauence
of execution, as i1llustrated above.

The commas in the above construct afe also use-
ful to prevent misconcentionslanour the results of opera-
tions. For instance.,

A = 13
A= A + A, + A;

leaves reaister A with contents 4, since it corresponds to

b=
1

h=2
I
—

A = A + A + A; (this is syntactically incorrect in L&Q)
might give the impression that A aets 3 as a firnal result.
The use of unaryvy operators i1s shown in the exam-—
ples below:
A = !C; /* move C to A, complement A =/
A = <<B; /*x move B to A, rotate A lett into the

carry bit */

A = >(B=8B+1); /* increment 2, move B to &, rotate
A right throuan carry &/
B = i A=msRy; /* move B to A, rotate A riaht into carry,

move L to B x/
Assiqgnment statements can involve user declarec

memory locations. For instance,



DECLARE (X,Y) BYTE;

X = (A=Y);:
causes the same effect as X=Y in a hicgher level languaae;
however, here 1t 1s clear that reaister A was used as an in-
termediary, and presently holds the value of variables X anc
Y This wvalue <can now be used, 1f necessary, without re-
quiring an extra load operation. The statements

DkCLAHt Y(2) BYTE~

Y = (HL=Y+1);

cause the value of Y (2 bytes lona) to be loaded into the HL
register pair, incremenfed, and deposited back into the
cells assigned to Y. Recister HL remains with the new value
of Y. On the other hand,

DECLARE Y (2) BYTE;

Y = (Az=Y+1);
works as the previous case, except that only the first byte
oif - Y is involved. Therefore, the numter of bytes atfected
depends on the coperation performed.

It is important to notice that the limitations
of the BUBRU architecture are reflected in the semanticé of
L8O, For instance, the following staterents, although synr-=
tactically correct, are semantically incorrect, since they

cannpot be executed by the machine:

b = b + 2 /* 3 valid alternative: B3=B+1, +]
HL = HL = 2000; /x a valid alternative: HLz=ZHL+ (8C==-2000)
C = X + 2i /* valid altermnatives: C=(A=X)+1,+]

or HL=.X; (=m(dL)+1,+1

2

*/

v/

* /



In addition to the reaisters ysed S0 Fary LB
provides reserved words to designate the following elerents
in the 8080 microprocessor:

IN(<number>) - input oort desianated vy <numbier>

QUT (<number>) cutput port desionarea by <number>

STACK - the tcomost two bytes of the machine stack
SP - stack Déinter register

cy - carry flag bit

PSw - program status word

The above listed elements can be used in assian-
.ment statements, as the féllowing exarples demonstrate:

SP = HL - 13; /* move HL to SP, decrement SP */

STACK = HL; /* push HL into the stack */

HL = STACK+BC,+5; /* pop HL, add BC to ML, aagd 5 to HL x/

-

A = IN(1) \ OFH; /* read input port 1 into A, or A
with O0F hexacecimal */

ouT Yy = (A=X)3: /* loagd A with the contents of X,
output A into port 4 */

Cy = 0; /* reset the carrv bit *x/

LB0 proviges a limited indexing capavility:
variables indexed by numeric constants can be used wherever
a non-indexed variable is allowed; dynamic indexinag can be
achieved only bLy wusing register pairs BC, DE, HL as 1ndex
registers. The symbols M(BC), M(DE), “(HL) are adopted in
this case. For instance: the followina statements are
correct:

X(2) = (A=Y(3)): /* A and X(2) cot the value of Y(3) «/

29



BE = X€(28)% /% load address of X(28) into HBUL a/

A= M(BC) + 157 /* load into A the contents of memory
cell indexed by BC, add 1% to A x/

M(DE) = (A=C); /* store the contents of C into memory
Iocation nointed to by DB */

The 8080 CPU 1is ah]erto exchange the contents of
some registers in a single machine operation. This feature
Qives rise to a special ooerator in LB0, the o= (exchanae)
operator. Statements involvinag the exchanrnae operator are
special cases of assignment statements, and c¢can he 1llus-

trated by the following examples:

HL. == Dt /* exchange the contents of the
HL and DE reqisters &/
HL == STACK /* exchange the contents of HL
with the topmost stack element =*/
Hi. == {STACK=BL) /* push BC, then exchange HL with
the topmost stack elerent */
HL == (DE=BC+1,+1) /* move BL to DE, add 2 to DE, then

exchanage the contents of HL, DE &/

Additional examples of L80 assianment staterents

are presented in the next sections, in conjuncticn with oth-
er LBO constructs.

Groups are seau2nces of statemenrts which behave

as programs within a program. One of their prdoprties 1s to

estanlish scope for variables and cata: an identitier de-

clared in a arouo is defined only within that orourn, anag



cannoft be referenced by

Y

group.

The reserved words DO and

if a aroup. For instance.
vo;

DECLARE X BYTE:S

DO

DECLARE Y BYTE;

stotements

located cutsiue the

END are used to delim-

the program

<statement 1>;
END;
<statement 2>; :
END;
EOF
contains two grouns; since the variable Y 15 ageclared i the
innermost aroup it canngt be referencedd by <statement 2>,
which is outside that grouo;’ <statement 1>, hcwever, can
reference both X anao Y. As far as the i1nnermest qgroup s
concerned, Y and X are said to be local and qglcbal ugri-
ables, respectively.
Another pronerty of aroups is that they are con-
sidered sinale statements. iwhenever an isolateac statement

. /
is expected, a arouo may be usedﬂ
i ——

property is related to conditional

troduced below.

a €. fConditinnal statoT££5;£

e

Conditional statements

different executian paths in a

proaram,

One application of this

statements, which are 1n-

can be used To select

They are cf the



forms
IF <condition> THEN <statement>
1F <condition> THEN <basic statement> ELSF (Staiemept)
where <statement> stanas for any L&D stateﬁent, angd <tasic
statement?> is any <statement> which is not & conditional
statement. The reason for such restriction 1is to prevent
ambiquities which arise in s;atemenrs such as
IF <cond 1> THEN IF <cond 2> THFEN <st 1> ELSE <st 2>
which has two different interpretations, decendina upcen IF-
ELSE matching conventions. Under the syntax of L80, the
above construct 1s always:internreted as
1F <cond 1> 1HEN
DO;
IF <cond 2> THEN <st 1> ELSE <st 2>;
END
The alternative interpretation must be exolicifiv imposea as
follows:
IF <cond 1> THEN
Do
1F <cond 2> THEN <st 1>
END
ELSE <st 2>
1t should be noted that the word ELSE is never
preceded by a semicolon, since it 1s not the beginning of a
new statement, but rather the continuation of the IF-THEN
part.

The <condition>, which always appears after the

S¢



word 1F, is not a logical expression as commonly uysed in
higher level lanqgquaaes, but rather a machine=-dependent
Boolean entity. In the 8080 CPU, four bits are used as
flags which are set according to the resuylt of some reaister
operations. These flags are called: Carrv; Siqh, lero, an
Parity; their status can be ‘senseu in LB0 crograms by means
of conditional statements. ;

In the simplest case, the above mentioned <con-

dition> is simply one of the possible flaa status:

ZERO (Zero flaa on)

! ZERO (Zero f}ag off)
cY 7 (Carry flaa on)

L CY (Carry flaa otf)
MINUS (Sign tlaa on)
PLUS (Siq6 flaa off)
PY EVEN (Parity flaa on)
PY 0ODD (Parity flaa off)

As an example, the concitional statement

1F 'CY THEN A=A+1 ELSE A=zA-1
causes A to be incremented if the CLarry flaa is 0, and de-
cremented if it is 1.

Usually the flaa bits have to he set by some
specific operation in order to assure that correct results
are obtained. For instance, to check it the contents of re-
gister A is 0, the programmer might perform a logical U<

operation on reqgister A with itself, which causes all flacs

to be set, and then the Zero flaa car be tested. This may

33



be accomplisned by writinag:
A = A \N A:
1F ZERO THEN ...

however, a more convenient notation is available in L&OU:
IF (A=ANA) ZERO THEN ...

Constructs as the one above improve program rea-
dability;s they show clearly.what operations are used to set
the flaas for cendition testing. Any numher of Staterents
can be enclosed in the parenthesis, as in:

1F (A=Xx; A=A+B; A=ANA) ZERO THEN ..,
All the properties of assi%nment statements hold, so the
same statement could be rewritten as:.

IF (A=Xx+B,\A) ZERO THEN ...
In many occasions nroaram logic reaquires the testina of more
than a sinale conditicn 1n order to decide upon the correct
execution path. L8O allows conjunction or disjunction of
conditions by means of the & (and) and \ (cor) operators.
For instance:

1F (A=C-3) ZERO & (A=D-4) ZERO THEN HL=MHL+1
causes HL to be incremented only if the contents of register:
C is 3 and the contents of D is 4, The statement

1F (A=(C-3) ZERQO N (A=0=3) ZERD N (A=E-3) ZERU THE®MN =i+
increments reagister B if at least one of the registers C, D,
E contains a 3.

lThe evaluation of compound conditions as the
ones ahove is always performed frnm-left tiol right . This im-

olies that for a disjunctive compound condition the  THE?



part gets coeontrol as soon as an isolated conaition evaluates
to true, while for conjunctive compound conditions the
statement after the ELSE is executed as soon as a false con-
dition is sensed.
A restriction on compound conditions is that the
&8 and \ operators cannot be intermixed at the same level; a
compound condition must be‘ either curely conjunctive or
purely disjunctive. This eliminates cuestions about the re-
lative precedence of the & and \ operators, and in fact
does not introduce excessive resfrictiOns, as can be cor-
c¢luded from the followinq:example:
IF (IF (A=C-3)ZERO & (A=D-3)ZEKO THFN CY=1 ELSE CY=0) CY
\ (AzZE=-3)ZERO THEN HL=HL+1
In this case HL is incremented either if £ contains 3 or
both C and D contain 3.

The B808B0 obprovides an accumrulator comparison

operation which can be used in conditional statements; this

e

{compare),

operation is denoted in LBO by the cocperator
and gives rise tg statements such as:
A::B /% compute A=B, without disturbing either
reagister, set flags accordina to result *
A::(B=C+1,+1) /% compute H=(C+2, corpare A and B &/
Comparison statemeéts can be incorporatéo gk dls conditional
statements, as in
1F (A=H; A::3) PLUS & (~A::20) MINUS THEN HL=HL+]
which causes HL to he incremented oﬁlv if the contents of

reaister B is less than 20 and areater than or equal to 3.

3%



Since comparison statements are not assignments,
they cannot be factored oy the comma mechanisr., For in-
stance,

A = B+C,::D
is not correct, since it expands to

A =B A= A + C; A= A::D
and A::D is not a value hut‘rather denotes the action of
setting the machine flaas.

f. (Ease statemeﬁigj

Case statements are a specialization of condi -

tional statements; they are of the form
DO CASE <reaister>;
<statement 0>;

<statement 1>;

<statement n2;

Case statements, as groups, are consicersed sin-
gle statements. However, they act as multi-path switches in
the followina way: 1f the contents of <register> 1s the
value 1 when the case statement 15 entered at run time, thpé
only <statement 1> 135 executed (if either i>n or i<V -then'
the result cannot be predicted).

To haQe more thanmn a sinale statement executed,
one can make wuse of the qrouo construct, as in

O CASE HL3:

RIVIH /* case ) x/



A = A+1;

B = B+1;
END; /* of case 0 >/
DU; /% case | #/

C = C+1;

D = D+17

END; /* of case 1 &/~

END
Case statements are in general more readab le

than an eaquivalent seauence of IF-THEN-FLSE statements.

Ge [terative starement§1

As their name implies, iterative statements are

useful in repetitive oonerations. These staterments are
availat:le in L80 in two different forms:
DO <assignment statement 1> HBY <assianment statement &>

WHILE <condition> ; <statement list> ; END
eSS

REPFAT; <statement list> ;.UNTJL <condition>
where <statement list> 1s a sequence of statements separatea
by semicolons, and <condition> is arny simople or compound
condition as described for conditional statements.
The effect of the DO-BY-whHILE construct is the
following:
- <assignment statement 1> is executed once; it 1s usually

an initialization statement:

- <condition> is testeas 1f it is true then <statement list>

37



is executed, otherwise coQtrol s transferred to the state-
ment after END;
- after each execution of <statement list>, <assignment
statement 2> is performed (usually this statement increments
or decrements a loop counter) and then the previous step
(condition testino) is applied..
As an example., fho statement
DO B=1 BY B=H+1 WHILE (A=B-31)!ZEROQ;
<statement list>;

END

ko
will cause the execution 6f <statement list> 30 times (as
lonag as the contents of B 15 not altered inside the loor).

Some variations are possible in the above pat-

tern; for instance, the 1ncrement part can be omitted, as 1in

Qﬂ.ﬂzi WHILE (A=B-31)!ZERO R (A=C-15)PLUS;
<statement list>;
ENQ
I1f both the initialization and the increment are omittedy

then the statement becomes a simple DUO=wHILF statement.

Another possibility is 1llustrated by
DO BY A=A+S WHILE (A:z:31)MINUS;
<statement list>;
B
This 1s useful if the initialization has alreaay bteen oh-
tained as a conseauence of some other staterment. -

The second kind of iteratijve staterent, the

REPEAT-UNTIL construct, also behaves as a single statement;
'l_-".‘—-_-—-‘—“-‘

38



however it is not considered a aroun, and conseauently does
e -
not create additional schpe for identifiers. Another major

difference between REPEATFUNTITL and DO-wHILE is that the
former always executes <statement list> at least once, while
the latter 1s able to execute no iterations at all. The
reason for this is that <conditior> is tested at the beain-
ning of a WHILE loop, and at the end of REPFEAT loops.
Compound conditions can be used in REPEAT state-

ments, as in

REPEAT;

<statement list>;
UNTTIL (A=ANNAZAI:L)ZERO & (A::H)ZERD

In this example, the lgop 15 repeated until the contents ct

register pair HL 1s (.

h-. fProcedure geclarationsl

A goed orocrammina techniaue, aoplicable in rany
cases: is to organize a oroaram as a hierarchy of smaller
units which perform specific tasks, ana which car  be codec
and tested indecendently.

Procedures are a useful tool in the procrarminag
of such units. A orocedure is a section of coge which im=-
plements a certain function. It 15 usually 1inpvoked hy other
procedures at a loagically hiahter level.

Procedures are most useful when they are able to
hantile parameters. Several technijgues for varaneter réSS*
ing, such as call by value, call by aadress, call hy nramre,

étc. are adopted in hiah level lanquaces. In a lanauage



which allows full control of the machine, such as L8O, it is
natural and efficient to pass parameters in reaisters. LB
obviously supports this kind of procedure, but also provides
parameterized orocedures;, usin ; i value mcdality
of parameter passing.

Procedures, as arocucs, define their own scone
for variables and data. .Every orocedure has a name, which
can be any leaal identifier. For instance:

HEX: PROCEDURE;

/* convert the contents of A (assumed in the

range 0-15) to a.brintable hex character */

IF (A::10) MINUS THEN A=A+'0!

ELSE A=A-10,+'A}';

END
defines a procedure with name HEX, and no explicit carare-
ters (the parameter in this case is passed in recister A, as
the comments reveal).

A procedure with oarameters miaght look lire:

MOVBUF : PROCEDURE (SOUKRCE,DEST):
/+* move 128 bytes from source toc dest */

t5C (KL=S0URCE); 7

HL = DEST?

D = 1287

REPEAT;
M(HL) = (A=M(BC));
HL=HL+1; BC=BC+1;

UNTIL (D=D=-1) ZERO;

ay



END MOVBUF;
Some points have to be clarified about this example. Param=
- _--._-—_- "

eters do not have to be declared in the procedure - they are

implicitly consiocered local variables, and are assianen two

bytes each. The repetition of the name of the procedure

after the word END is not %andatory, but simply a converi-
ence to the user to improve program readability. This
feature applies to aroups and iterative state*ents as well:
the word END can alwavs be followed by an user defined iden-
tifier, which is treated 53 a comment.

A procedure can contain ary statements, inclucd-
ing the definmition of other procedures. Control is rever
transferred to a procequre as a mere conseqguence of seusen-
tial execution of statements., For 'nstance:, in the code
seqgment:

A = At];

XxX: PROCEODURL:

C = C+1~;
END XX:
B = HB+1;

the next executable statement after A=d+]l is HBz=B+1; the pro-
cedure declaration is skipped automatically. Executicon of
procedures is only throuah call statements, described in the

next paraaraohs.,

S|



i. Procedure calls
After beinc detined, oprocedures can be invoked
by means of call statements. Referripag to the previous ex-
amples, the following statements could he issued:

A=S; CALL HEX?

DECLARE X(128) BYTE:

CALL MOVBUF (UB80H, .X);

DECLARE Z(256) BYTL;

CALL MOVBUF (.Z(0),.Z(128));

As mentioned previously, L8O constructs do not
destroy the contents of-reaisters without an explicit en-
dorsement by the orogrammer. This feature is somewhat hara
to reconcile with parameterized procedure calls, sirce
parameter passing always 1nvolves some reqgister manipula-
tions. lo avoid excessive save-restore overhead:, iﬁﬂmﬁﬁlﬁiJ

parameters are restricted to consrants.f This restriction is

easily overcome by noting that the acddress of a variable is

always a COnstant?in LEBO (since no dynamic allocaticn of

storage at run time is provided). Therefore, if the address

-_—

of a variable is used as an actual parameter, the called
T

procedure aets all the information necessary to work with

the variable itself. Thus, LBO proceaures can furction in a

call by address mode. Q}i% is the reason why formal parame-

ters are always assianed two hvtesglrhev are assured to holno

£



addresses, which are 16 bits long in the B0OBO.

Procedure calls can be nested, which is consid-
erably facilitated by the stack available in the BORO, The
depth of procedure call nesting 1S limited only by the
amount of memory allocated to the stack. This allocation is
not automatically performed in LB0, but rather it is lefr to
the programmer,

A procedure cannot be called before it is de-

fined: and recursive calls are not directly suoported. A

call to any absolute memory location is permitted, however,
as in

CALL 3FFDH
Parameter passing is not allowed in this case.

A peculiarity of the 8080 is the provision of
restart instructions which are l=byte <calls to absolute
memory addresses 0, 8, 16, 24, ..., S6. These instructions
can be invoked in LBO in the obvious way:

CALL 0;

CALL So;
it D0

The BORO instruction set also contains special

\conditional call/ instructions, which are represented in LHO
by statements of the form:
F <simple conaition> CALL ...

uz



These conditional statements have a sliohtly cifferent Syn-—
tax, since the word THEN is omitted. Comoound conditions
are not permitted in this class of statements, referred to
as conditional calls. lhe following are examples of condi-
tional calls:

IF (A::(B=B+1)) ZERO CALL 'HEX;

- e -

1F (D=£+%5) PLUS CALL MOVBUF(.X,080H);

The same results would be obtained with conditional state-
ments (1F-THEN) but with sliahtly less eftficiency.

When a call statement 1s . executed, control is
transferred to the called procedure, andg the return address
is saved in the machine stack. The instruction addressea oy
the topmost stack element aets contrel wher a RETURN state-
ment is executed.

Procedures may contain any number of return
statements, as dictated by program lonic. A return state-

ment 1s alwaygkgrovideo bv LB0O at the end of each procedure.

Analogous to conditional call instructions., the

8080 pravides\sonditional returns.) In LHO, these are denot-
ed by:

1F <simple condition> RETURN
as in

IF (A=B-3) ZER0O RETURN;

IF (A=(C=C+1)-5) PLUS RETUKN;

44



Compound conditions are not allowed in this class of state-

ments.

j - k}ahel deciaratlgﬂj]

Although the L8B0 control constructs presented so

far are sufficient for most programmino needs, there mav he

occasions in which goto's are reauired. Both symbolic and

»

absolute addresses can be used 1in LB0 in connection with
goto's. Symbolic addresses are established by means of la=
bels, which c¢an be any user defined identifiers. For in-

stance, in the program seament:

.

LOOP: A = A+t1:

GOTO LOOP;
o~

pwANERE '‘DEcipg RE sopp 2eBEE e
the label LOUP 1s assocliated with the address of the state-
ment A=zA+1 .,

i
E;f a label is to he refererced before it actual-

ly appears N the source orogram, it must bte declarea, as
—

1
DECLARKE LOOP LABEL;

G010 LOOP;

LOOP: A A+1s

- =

[gabels, as any other 1dentifiers, are subject to
scope ruies./ Therefore, in the proaranm

=it |

vo;

45



DECLARE (LAB1,LAB2) LAREL;
GOTO LABI;
LABS: DO;
LABIz € = €¥1;
LAB3: GOTO LAB2;
CEND;

LABL1: A = A+1l;

LABZ2: B = B+1l;
END;
LOF
the sequence of execution i1s: A=ZA+1, C=C+1, Bz=H+1.

More than one one label can be defined for 3

sinqgle address. The actual address of a label can be obh-
tained by the dot operator. FRoth features are illustrated
by 2

LAHZ: LABS: HL LLARZ;

- e -

LAB4: LABS: BC LLAB2(3) 7

1

The first statement loads the address of LAR2 into reaister

HL, while the last statement loads the address of LAB2 plus

3 into BCs
Sﬂ££££i£_lﬁhgiéjare also allowed in LBN; they
force code to bhe generated at a relative address ecqual to

the value of the number. For instance,

[N}



c00: A = At

specifies that rhl code emitted for A=ZA+1 and i1ts subsequent

—_—

statements beagin at address 200, relative to the oriain of

the proaram. The reason for this address to be relative is

that LBU0 programs are relocatatle (however, when numeric
values are used in GOTU or CALL statements, they refer to

absolute memory locaticns).

As for calls and returns, |conditional jumo/ in-

structions are available on the 8080. In LBU they take the
form:

JE. egiapis conditions BOTD ...
and can involve labels or absolute addresses, as in

1F (A::3) PLUS GOTO 3FFDH

Labels can also be used 1in conjunction with call

statements. However, this 1s not advisable, unless return
paths are provided by the prococrammer. Thus, the followinag
1is permitted:

LOOP: A = A+l
CALL LOOP;
GOTO LOQP;

GOTO LOOP(3);

CALL LOOP(S)?

a7



HL = .LOOP(6);

GOTO M(HL);

The last statement corresponds to another special feature of
the 8080: control is transferrearto the instructior located

at memory location addressed by the HL reaister. H:qr\

.

ki External declarations

The declarations examined so far apply to vari-

ables, data and labels which belong to the current proaram.
It is also possible for L80 prcarams to contain refererces
to storaqe allocated to. modules aenerated in i1ndepercent
compilations, causing retrieval of the referenced moaules
and their incorporation into the current program a2t load
time.

At this point 1t should be nentioned. that the
product of each L80 compilation is an indemendent module,
made up of three segments (any of which ray be empty):

- a code Aarea, containing executable code, and constants

b U S
e —
(declared as DATA) to be located in R(IM;

-~ an initialized data area: which contains oprogram con-
nitiolized data area _
—_—

stants, such as strinags, and wvariables to which initial

values were assiqgned in the source proaram;

- a work area: comprising sterage assigned to ron-

initialized variables.

when several modules are linken into a sinale

executable object program, all code areas are concatenated,

followed. by the initialized data areas, anag al) the work

ug



areas. As a consequence of this scheme, control could he
passed from one module to the next by mere secuential execu-
tion. This method, however, is not recommended. A better
technique- 1s to transfer control from module to mocdule by
means of calls or goto's. For instance, in the program seaq-
ment

DECLARE (X,Y) EXTERNAL:

CALL X(.Y,2900H);

X ang Y are names of external modules, and are referenced in
two different ways. The expression .Y gives the address of
the first instruction in the code area of module Y, ana  is
used Iin the example as an araqument for procedure X,

It is also possible to reference the initialized
data area of an external module, which allows intermodule
data sharina. As an example,

DECLARE Z COMMON, w EXTERNAL;

- s =

CALL w(.2(3));

would pass to external procedure W the address of the fourth
byte in the initi1alized data area of module Z.
1t must be menticned that a module name cannot

be declared as FXTEPNAL and COMMOMN at the same time, because

a9



then it is not clear to which seagment external references
apply. Nevertheless, aiven the block structure of L80, the
problem is overcome as in the following example:

LO;

DECLARE X EXTERNAL?:

DECLARE X COMMOMN;

HL = .X(4);

END
In this example, both the code area and the data area of

external module X are accessed.

1. [Control statements

The 8080 provides some special instructions

which <can be <classified as machine control instructions.
These operations are denoted in LAO0 by the following

reserved words:

HALT /* stop the CPU x/
NOP /* no operation */
ENABLE /* enable interrupts »/
Qliiih& /* disable interrunts 4/

These words can be used as reqular L80 statements.

50



B. THE SYNTAX OF MLBO

Hoth MHO and LB0, the macro orienterd and machine orient-
ed components of the MLB0 lanauage, are defined by recursive
grammars. Ihese grammars are presented in the followinag
sections, using BNF notation.

1. [FB0 aranmar]

In this section, the symbhols <identifier>, <number>,
<string> are considered terminal grammar symbols. The syn-
tax for these symbols is informally described in LY ANeds
The syntax of the‘MBU lanauage 1is definéd as follows:

[ <statement> ]

]

<program> ::

i <program> [ <statement> ]

= <integer.declaration>

e

<statement?>
i <assijianment.statement>
! <evaluation.statement>
i <macro.declaration>
i\ <macro.call>
I <if.statement>
<inteaer.declaration> ::= INT <identifier>

¢ <integer.declaration> <identifier>

<assignment.statement> ::= <identifier> := <expression>
<evaluation.statement> ::Z <format> <expression>
<format> ::z= DEC

ncT

y HEX
i+ CHAR

<macro.declaration> ::= <macro.dec!l.head> <strina>

51



<macro.decl.head>

1l

<macro.coll> ::

<macro.call.head>

<if.statement> .

<expression>

<logical.factor>

<loagical.secondar

<logical.orimary>

1
I

<relation> :!:

.
.
1

<arith.expr>
L}
L]
<term> ::!= <prima
]

v <term>

V <term>

i <term>

-
. =

<primary>

|-

= MACRU <identifier>

! <macro.decl.head> <identifier>

<macro.call.head>

.

= <jdentifier>

i <macro.call.head>

<expression> THEN

<expression> THEN

<loqgical.factor>

<strinag>

<strinqg>

<string>

ELSE <string>

<expression> \ <lpaical.factor>

<expression> \\ <logical.factor>

= <logical .secondary>

y> 1:= <loaical.orimary>

' 1
1 -

<loaical.nrimary>
t:= <arith.,expr>

i <arith.exor> <relation>

: < : > ' <= : p
<term>
<arith.expr> + <term>
<arith.expr> = <term>
ry?>
A <primary>

/ <primary>

% <primary>

= <identifier>

v <number?>

' <number>

i <logical.factor> % <lpogical.secondary>

<arith.exor>

<>



' ( <expbression> )

' ( <assignment.statement> )

s ILHO qrammaﬁ

In this section, the symbhols <idertifier>, <number>,
<string>, <empty> are considered'terminai symbols. The syn-
tax of the first three is informally describped in II11.A.3%;
the symbol <empoty> represents the empty string. The svntax
of the L80 languaae is defined as follows:
<program> ::= <statement.list> ; EOF

<statement>

n

<statement.list> ::

<statement.list> ; <statement>

<basic.statement>

<statement> =I:
i <if.statement>

<basic.statement> ::= <decl.statement>

v <aroup>

i <procedure.definition>

1 <return.statement>

v <call.statement>

v <qoto.statement>

y <reveat.statement>

i <control.statement>

v <compare.statement>

i <exchange.statement?>

i <assianment.statement>

i <label.definiticn> <pasic.statement>

<labpel.definition> <jdentifier> :

<number> :

93



<jf.statement?>

<jf.clause> ::
<true.part> :

<compound.cond

<and.head> :

<or.head> ::=

-

<simple.conai

<condition> ::

<decl.statemen

<decl.element?>

<if.clause> <statement>

"
ve
"

<if.clause> <true.part> <statement>

! <label.definition> <if.statement>

= IF <compound.condition> THEN

= <bhasic.statement> ELSE

ition> := <and.head> <simple.condition>

<or.heag> <simple.condition>
i <simple.candition>
<simple.condition> §
<and.head> <simple.condition> &
ST LS vERn At ¢l an5
<or.head> <simble.c0ndi£ion> \
ion> 1:= ( <statement.list> ) <condition>

v <condition>

o)
-

i Cy

y PY 0ODD
v PY EVEN
v PLUS

i MINUS

t> DECLARE <decl.element>

‘e
1

<decl.statement> , <decl.element>

e <storaauae.declaration>

i <ident.specification> <type>

i\ <identifier> <data.list>



<data.list> :

<data.head> :

<storage.decl

1= <data.head> <constant> )

DATA (
! <data.head> <constant> ,

aration> ::= <ident.specification> BYIE

<bound.head> <number> ) BYTE

\ <storage.declaration> <initial.list>

<type> ::= LABEL

V' EXTERNAL

¢ COMMON

<jdent.specification>

<ident.list>

<hound.headg>

<initial.list>

<initial.head> :

:= <identifier>

"
.

:‘<idont.list> <identifier> )

e

X
I

~

! <ident.list> <jdentifier> ,

::= <ident.specification> (

‘e
.
|

:= <initial.head> <constant> )

= INTTTAL (

i <initial.head> <constant> ,

<qroup> ::= <aroupn.head> ; <endinag>

<ending> ::=

<aroup.heaao>

END
FND <jidentifier>
<label.definition> <ending>

= DO

1 DO <jiterative.clause>
v+ DO <case.selector>

v <group.head> ; <statement>

<jterative.clause> I:=

<initialization> BY <assignment.statement> WHILE

55



<compcund.condition>
' <initialization> WHILE <compound.condition>
<initialization> :!= <assignment.statement>
\ <empty>

<case.selector> ::= CASE <register>

<procedure.definition> ::

<proc.head> <statement.list> ; <ending>

<proc.head> ::= <proc.name> ;
i\ <proc.name> <formal.param.list> ;
<proc.name> ::= <label.definition> PROCEDURE

<formal.param.list> ::= <formal.param.hean> <jdentifier>

<formal.param.head> (

i\ <formal.param.head> <identifier>

RETURN

.

<return.statement?>

v IF <simple.condgition> RETURN

<call.statement> :: <call> <identifier>
i <call> <actual.param.list>

' <call> <number>

<actual.param.head> <constant> )

<actual.param.list> :

<identifier> (

<actual.param.head> :
i <actual.param.head> <constant> ,
<call> 1:= CALL

i IF <simple.condition> CALL

<goto.statement> ::% <goto> <identifier>

-

<goto> <number>"’

v GOTO M ( HL )

.o
"

<goto> : GOTO

56

r



i 1F <simple.condition> GOTO

<repeat.statement>

REPEAT ; <statement,list> ;7 UMNTIL <comround.condition>

<control.statement> ::= HALT

NOP

-

! DISABLE

I ENABLE
<compare.Statement> ::= <reoister> :: <secondary>
<exchange.statement> := <reqglister> == <pregister.expression>

= <variable.assianment>

<assignment.statement>

i <reqgister.,assianment>

= <variable> = <register.expression>

.

<variable.assignment> :

<reaister>

<reagister.expression> :

( <reaister.assianment> )

<reqgister.assignment>

<reqgister> = <primary> <binary.op> <secondary>
'\ <register> = <unpary.op> <primary>
y <reqgister> = <primary>

i <register.assianment> , <binary.op> <secondary>

<primary> ::= <variable>

<secondary>

<secondary> : <register.expression>
| <constant>

<constant> f:= <strinag>

i <number>

i = <number>

i . <identifier>



'\« <identifier> ( <number> )

i - <string>

1]
p=
o)
o
m
~

<reaister> I:

=
—~
X
-
~
=
(]
jw)
m
20
-
w
T

<hbinarysop> 3= 4 1 ¢ o34 = 4 == S0 TR LN ST AN
<ynary.op> ::= < |} << A T : R
<varijable> ::= M ( BC )

i M ( DE )

i <identifier>

! <identifier> ( <nurmber> )
v IN ( <number> )

v OUT ( <pumber> )

M ( <constant> )

C. [PROGRAMMING ExﬂMPLtgj

Sample MLB0O programs are presented 1in this section,
which are intended to illustrate the usaae of most lancuage
constructs.

] . A bubhble sort procedure

/* A BUBBLE SORT PROGRAM 1K MLBO »*/

EXCH: PRUCEDURE;
/* EXCHANGE THE CONTEMNTS OF M(BC), M(HL) =/
LD=(A=M(BC)):
MOBC)=(A=M(HL));
M{HL) =D
END EXCH;

SURT: PROCLDURE(N,VEC);
/* SGRT A VECTOR OF AT MOST 255 2-BYTE ELFMEMTS »/
/* VEC: ADDRESS OF THE ARRAY 10 Bt SGRTED a/
/x N ADDRESS OF THE BYTE CONTAINING LO. ELEMENTS 2/

58



D = 1; /» 'SelICHED' FLAG: 1 1F SORT HOT YET LOWNE »/
DO WHILE (A=D,+0) ! ZEROD; /A ADD 0 TO SET FLAGS a/
D = 0;
HL=M; E=M(HL); /* NO. ELEMENTS T0 SORT =/
HL = VEC; /* HL POINTS 10 FIRST VEC ELEMENT x/
DO WHILE (E=E=1) ! ZERO;
BC = HL+1,+1; /* POTNT TO SUBSEQUENT ELEMENT A/ .
A= M(BC) = M(HL)Y:?; /* SUBTRACT LOW ORUDER BYTES =%/
HL=HL+1; BC=HBC+1; /* POINT TO HIGH ORDER BYTLS #/
IF (A=M{BC)=-=-"(HL)) MINUS THEN /* REVEKSEDN =*/
DO:; /* EXCHANGE =/
CALL EXCH; /Z+* HIGH ORDER BYTES =2/
HL = HL = 17 RC = 8BC - 1;
CALL EXCH: /Z» LOw ORDER BYTES */
D = 1; /7 SORT MOT YET DOME */
ML = BC: /% NEXT ELFMENT =/
ENMD
ELSE HL = BC - 1: /2 NMEXT ELEMENT =/
EnD;
END
END SORT;

(MACRD CR 'ODH' ]
IMACKRO LF '0OAH' )
AMACRO BDOS *3FFDH' )
(MACRO CPM LNVIL|

PRC: PROCEDURE;
/* PRINT A CHARACTER (ASSUMED IN REG E) */
C = 2;
CALL (BDOSY
END PRC;

CRLF: PRUCEDURE?
/*x SEND CARRPIAGE RETURN, LINE FEED TO THE COMNSOLE &/

E = (CR}: CALL PRC:
E = [LF1; CALL PRC;
EnND CRLF;

PRL: PROCEDURE; .
/* PRINT A LINE (ADDRESS OF TEXT ASSUMFD AT RIEG HL) »/
DECLARE SAVEHL(2) BYTE;

SAVEHL = HL;

CAlL ERLF 7

L= 9;

DE = (HL = SAVEIHL);
CALL [BDNOST

END PRL;

MAIN: /% A TES1 FOR THE SORT PRKOCEDURE a/
DECLARE ARERAY(31) BYTE INITIAL('AAXXDDEEILA4GGHY",
PJJFFEEPPUONNSSS ')
DECLAKE N BYTE INTITIALC1S);
SP = 2900H;

59



HL

CAaLL

HL

CALL
GOTO

EOF

s

ARITH:

[MACKO
[MACRO
[MACKO
[MACRO
[MACRO

BMULT :

SHk:

AMULT ¢

JARRAY

LARRAY ;
CRLF;
LCPM] ;

CALL PRL:

SORT(.N, . ARRAY);

CALL PRL;

Multipolication and division routines

PRUCEDURE ;

/* SOME BASIC ARITHMETIC FUNCTTIONS »/

/* USAGE:

DECLA
L <
CALL

RE ARITH
FUNCTION
ARITH?

FUNCTTONS AVATLABLE:

X N U D WA

BOOS
PRC
PkU
SHR
SHL

CHR
CHR
REG

PROCLDURE ;

A TN

BC IN
HC IN
BC In

‘3FFDH' )

'E=(CHR] ;
'E=''I[CHRY "'
'IREG)I=(A=>[REG] !
REG '"IREGI=(A=<[REG]})" /*» ROT PEG LEFT

BYTE MULTIPLICATION
ADDRESS MULTIPLICATION
BYTE DIVISION

ADDRESS DIVISION

PRINIT
PRINI
PRINT
PRINT

HEX FORMAT
HEX FORMAT
UNSIGNED

SIGHED DEC

CALL PRC

CALL

/

/ *

EXTERNAL;
NO . >:

BC cC *+ D
HLBC BC =
C=C/7D; B=C%zD

BC=RC/DE; HL=BCZDL

DE

DECIMAL FORMAT

IMAL FORMAT
x/

* PRINT CHR =%/ ]

PRC® 1

ROT PEG RIGHT THRU CY

THRKU CY

Zx BYITE MULTIPLICATION ROUTINE =/

/A INPUT:

QUTRPUT:

B=03;
E=93;
/%
{SHR . *C*]).;
IF (E=FE-1)
A=B; /A
IF CY THEN
B Az A 3

GuTO SHR7

END BMULT;

/A
/ x

PROCEDURE
/x ADDRESS

MUL
MUL
UNS
SIG

L2
P2
BC:
£

INITIALIZE PARTIAL SuM
INITIALIZE LOOP COUNTER
SHIFT LOwW

ORDER
. /*x C
ZERO /=

HIGH ORDER BYTE OF PAKTIAL SuM

A=A+D:
/% SHIF

MULTIPL

TIPLIER

TIPLICAND
IGNED 16
NED

b1

BYTE OF PA
Y GETS LOWw
DONE */ RE

/A

T HIGH ORDE

ICATION

8 BIT PRODUCT

ROUTINE

1 PRODUCT
*x /

*/

*/

RTIAL SUM =/
ORDER B1T OF C
TURM;

*/

*/

ADD MULTTPLICAND =/

R BYTE OF PARTIAL SuUW

*/

*/]
* /)

A/



SHR:

BDIV:

ADIV:

/* THPUT: BC: MULTIPLIER (HIGH,LUW)
DE: MULTIPLICAND (HIGH,LOW™)
QUTPUT: HLBC: 32 BIT UNSIGKED PRODUCT
BC: 16 BIT SIGMNED PRODUCT x/

DECLARE I BYTE:

HL=03; /* INITIALIZE PARTIAL SUM &/
I1=(A=17); /2 INITIALIZE LOOP COUNTER x/

/% SHIFT LOw ORDER 16 BITS OF PARTIAL SUM &/
[SHE 'H'];

[SHR 'C');

IF (A=I-=1) ZERO RETURN?

I=A; /* UPDATE LOUP COUNTER &/

IF CY THEN HL=ML +DE; /% ADD MULTIPLICAND a/
/+ SHIFT HIGH ORDER 16 BITS 0OF PARTIAL SUM =x/
[SHR 'H'];

[SHR *L'1;

GUOT() SHR;

END AMULT;

PROCEDURE 7
/x BYTE DIV

1
/+ INPUT: C: DIVIDEND
)

SION ROUTIMNE =#/
D: DIVISOR
OUTPUT: C: QUOTTENT
D: DIVISOR
F: REMAINDER x/
/x INLJTTALLIZE »/
B = 0;
L £ 8 /x LOOP COUNTER =/
REPEAT;
/*% SHIFT REM,QUOT LEFT &/
cy = 0;

[SHL 'C'};

[SHL 'B']);

/* SUBIRACT DIVISOR =2/
1F (A=B=D) PLUS THEN

DOs

B = A; /% UPDATE 1B ay/

C = (A=CN1)7 /% SET BIT O OF OQUOTTENT
END; ’

UNTIL (L=L=1) ZERO:
EnND BDIVS

PROCEDURE 7
/x ADDRESS DIVISION ROUTINE &/
/* INPUT: BC: DIVIDEND (HIGH,LOw)
DE: DIVISOR (HIGH,LO®)
QuiPruT: BC: QUOTIENT
DE: DIVISUR
HL: REMAIMDER */

DECLARE M HBYIE;

61

* /



HL = 07

DO N=(A=1) BY N=(A=N+1) WHILE (Az=N; A::17) '7ERO;
/* SHIFT REM,QUOT LEFT #x/ '
CYy = 03
(sHL 'C')
[SHL 'B")]
“ISHL ‘L")
[SHL 'H');
/* SUBTRACT DIVISOR =#/
IF ( L=(A=L=-E); H=(A=H==D) ) PLUS

THEN C=(A=CN1) ¢ /* SET BIT 0 OF QUUTIENT =/

ELSE HL=HL+DE; /% RESTORF a/

END;

END ADIV;

e wE oW

SHRA: PROCEDURE;
/x SHIFT A RIGHT L BITS =»/

REPEAT;
cYy = 0;
A = >A;

UNTIL (L=L-1) ZERO;
END SHRA;

PRC: PROCEDURE?
/% PRINT A CHARACTER (ASSUMED IN REG E) */
C = 2;
CALL (BDOS1?
FluD PRC;

PRAH PROCEDURE ;
/+ PRINT VALUE OF A (ASSUMED I# THE RAMGE 0-15)
AS A HEXADECIMAL CHARACTFR »*/
IF (A::10) MIMUS THEN A=A+"("
FLSE “A=A~10,+"A";
(PRC *A']);
END PRAMH;

PRINI$A: PROCFEDURE;
/x PRINT 2 HEX CHARS REPRESEMTING THF VALUF OF A& &/

STACK = kSw; /*x SAVE A x/
L=8; CALL SHRA; /% GET HIGH NIBBLE a/
CALL PRAH; /* PRINT HIGH MIBBLE a/
PSW = STACK; /* RESTORE A s/

A= A & OFH; /% GET LOW NIBRLE #/
CALL PRAH; /+ PRINT LOW NIBBLE */

END PRINTSA;

PRINTEBC: PROCEDURES
/% PRIMNT 4 HEX CHARS KEPRESENTING THE VALUE OF HBC #/
STACK = BC:; /* SAVE BC =%/
A = B; CALL PRINTSA;
BC = STACK; /* RESTORE bLC »/
A = C; CALL PRINTIS%A;
ENC PRINTSBC;

62



PROHL 3

PROCEDURE ;
/x PRINT VALUE OF HL IM UNSIGNED DFCIMAL FORIMAT,
SUPPRESSING LEADING ZEROS =%/
DECLARE (Q,$HL)(2) HYTE, PRZ HYIE;
SHL=HL?; /* SAVE HL =~/
0=(HL=10000);
PRZ=(A=ANNA); /% PRZ=0: DO NOT PRINT ZEROS #»/
REPEAT;
/* DIVIDE HL BY Q =/
BC=(HL=%HL); DE=(HL=Q); CALL aDIV:
$HL=HL ; /* SAVE KEMAINDER =/
IF (A=C+0) 'ZERO Zx QUOTIEMT 1S HOT ZERD
N (A=PRZ+0) !ZERD THEN
DOs /% PRINT QUOTIENT =+/
A=C; CALL PRAH;
PRZ=(A=1): /* ST0P SUPPRESSING ZEROS
END;
/% DIVIDE Q@ BY 10 =»/
BC=(HL=0Q); DE=10; CALL ADIV:; Q=(HL=BC):
UNTIL (A=Q7 A::1) ZERO;
HL=%HL ; /* LAST REMAINDER =#/
A=L; CALL PRAH;
EnND PRDHL;

/* MAIN: SELECT THE ADEQUATE FUNCTION =/

EOF

H=0; L=L=-17
DO CASE HL;
/* 1 *»/ CALL BMULT;

/* 2 *x/ CALL AMULT;

/* 5 »/ CALL BODIvV;

/% 4 */ CALL ADIV:

/* 5 */ CALL PRINTEA;

/rx 6 2/ CALL PRINTEBC;

Zx 1 ~/ DO; .

HL=BC; CALL PROHL;
EMND;

/x 8 */ DO;
IF (A=8+0) MINUS THERN /% BC<0 */
DO;
STACK=BC;
(PRQ '='1;
B8C=3STACK7?
L=(A=0~-C); H=(A=0--8);
END
ELSE HL=RC;
CALL PRODMHL
END;
END; /% CASE =/
END ARTTH;

63

»/

*/



3. Usage of external procedures
/* TEST PRUOGRAM FOR ARITH. PROCEDURES s/

(MACRO CPM *'0" )

[MACKO BDOS '3FFDH' ]

[MACRO CR 'ODH"' ]

[MACRO LF ‘*O0AH"' ]

(MACRO PKRC CHR '‘E=([CHR]; CALL FRC' )

(MACRO PRQ CHR 'E=''[CHR]''; CALL PRC' ]

[MACRO PRV VAR 'BC=(HL=(VAR)); L=8; CALL ARITH' )

PRC: PROCEDURE?
/* PRINT A CHARACTER (ASSUMED IN REG E£) =/
C=2; CALL [(BDOSI];
EMD PRC;

CRLF: PROCEDURE?
/* CARRIAGE R
IPRC “*ICRI " ]
LPRC. M ELEY™ )
END CRLF;

ETURN, LINE FEED &/
% .

/x MAIN: 7/
DECLARFE ARITH EXTERNAL;
DECLARE (Xx,2)(2) BYTE, Y(2) BYTE INITIAL (=9);
SP=2900H; -
DO X=(HL==50) BY X=(HL=X+(BC=10)) WHILF (A=X-100)
/% TEST ADDRESS MULTIPLICATION %/
BC=(HL=X); DE=(HL=Y+1,+1); Y=HL;
=gy CALLY ARLTHS - Z=(HL=HC);
CALL CRLF;
[(PRV 'X"');:
[PRO '*');
(PRV 'Y');
(PRQ '='];
(PRV 'Z2'1;
END;
CALL CRLF;
GOTO [CPM];
FOF

64

ZERD






